Nucleotide sequence of the adi gene, which encodes the biodegradative acid-induced arginine decarboxylase of Escherichia coli

Author:

Stim K P1,Bennett G N1

Affiliation:

1. Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251.

Abstract

Arginine decarboxylase (encoded by adi) is induced under conditions of acidic pH, anaerobiosis, and rich medium. The DNA sequence of a 3-kb fragment of the Escherichia coli chromosome encoding biodegradative arginine decarboxylase was determined. This sequence encodes a protein of 755 amino acids with a molecular size of 84,420 daltons. The molecular weight and predicted Adi amino acid composition agree with those found in earlier work. The amino acid sequence of arginine decarboxylase showed homology to those of three other decarboxylases of E. coli: (i) CadA, encoding lysine decarboxylase; (ii) SpeC, encoding biosynthetic ornithine decarboxylase; and (iii) SpeF, encoding biodegradative ornithine decarboxylase and the lysine decarboxylase of Hafnia alvei. Unlike SpeC and SpeF, Adi is not similar to the biosynthetic arginine decarboxylase, SpeA. adi is also dissimilar to cadA and speF in that it does not appear to be part of an operon containing a metabolically related transport protein, indicating that it represents a new type of biodegradative decarboxylase regulation. Transcriptional fusions between fragments upstream of adi and lacZ, primer extension, and site-directed mutagenesis experiments defined the pH-regulated promoter. Deletion analysis of the upstream region and cloning of fragments to make adi::lacZ protein fusion implicated a region beyond an upstream SspI site in pH regulation. Induction of adi in the presence of sublethal concentrations of novobiocin or coumermycin A1, inhibitors of DNA gyrase, was dramatically decreased, indicating that DNA supercoiling is involved in adi expression. These results and those of promoter structure studies indicated that acid regulation of adi may involve a mechanism different from that of acid regulation of cad.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3