Dengue Virus Utilizes a Novel Strategy for Translation Initiation When Cap-Dependent Translation Is Inhibited

Author:

Edgil Dianna1,Polacek Charlotta1,Harris Eva1

Affiliation:

1. Division of Infectious Diseases, School of Public Health, University of California, Berkeley, Berkeley, California 94720-7360

Abstract

ABSTRACT Viruses have developed numerous mechanisms to usurp the host cell translation apparatus. Dengue virus (DEN) and other flaviviruses, such as West Nile and yellow fever viruses, contain a 5′ m 7 GpppN-capped positive-sense RNA genome with a nonpolyadenylated 3′ untranslated region (UTR) that has been presumed to undergo translation in a cap-dependent manner. However, the means by which the DEN genome is translated effectively in the presence of capped, polyadenylated cellular mRNAs is unknown. This report demonstrates that DEN replication and translation are not affected under conditions that inhibit cap-dependent translation by targeting the cap-binding protein eukaryotic initiation factor 4E, a key regulator of cellular translation. We further show that under cellular conditions in which translation factors are limiting, DEN can alternate between canonical cap-dependent translation initiation and a noncanonical mechanism that appears not to require a functional m 7 G cap. This DEN noncanonical translation is not mediated by an internal ribosome entry site but requires the interaction of the DEN 5′ and 3′ UTRs for activity, suggesting a novel strategy for translation of animal viruses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference64 articles.

1. Eukaryotic Translation Initiation Factor 4GI Is a Cellular Target for NS1 Protein, a Translational Activator of Influenza Virus

2. Bartelma, G., and R. Padmanabhan. 2002. Expression, purification, and characterization of the RNA 5′-triphosphatase activity of dengue virus type 2 nonstructural protein 3. Virology299:122-132.

3. Borman, A. M., R. Kirchweger, E. Ziegler, R. E. Rhoads, T. Skern, and K. M. Kean. 1997. elF4G and its proteolytic cleavage products: effect on initiation of protein synthesis from capped, uncapped, and IRES-containing mRNAs. RNA3:186-196.

4. Brinton, M. A. 1986. Replication of flaviviruses, p. 327-374. In S. Schlesinger and M. Schlesinger (ed.), The Togaviridae and the Flaviviridae. Plenum Press, New York, N.Y.

5. Brinton, M. A., A. V. Fernandez, and J. H. Dispoto. 1986. The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology153:113-121.

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3