Isolation of an ammonium or methylammonium ion transport mutant of Escherichia coli and complementation by the cloned gene

Author:

Jayakumar A1,Hwang S J1,Fabiny J M1,Chinault A C1,Barnes E M1

Affiliation:

1. Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030.

Abstract

During nitrogen-limited growth, Escherichia coli expresses a specific ammonium or methylammonium ion transport system (Amt). Strains carrying defects in Amt have been isolated following Tn10 transposon mutagenesis. These mutants have less than 10% of the transport activity of the parental strain. Glutamate, glutamine, arginine, or high levels (20 mM) of ammonium will serve as the sole nitrogen source for growth of these strains, and glutamine synthetase is normally expressed and repressed by the nitrogen regulatory (Ntr) system. When transformed with plasmid pGln84, containing lacZ fused to an Ntr promoter (glnLp), the Amt mutants expressed a normal level of beta-galactosidase. Furthermore, P1 bacteriophage transduction of the amt mutation into an Ntr mutant, normally constitutive for Amt, gave Amt- transductants. Therefore, the mutations are unlikely to lie within genes affecting Ntr elements. Following transformation with plasmid libraries of E. coli genomic DNA constructed in pUC9, two plasmids conferring the Amt+ phenotype on the amt mutants were isolated. These plasmids were unable to complement the Amt- phenotype of Ntr- mutants. Restriction digestion of these plasmids revealed common fragments, and Southern blot analyses indicated that the Amt-complementing sequence and the site of Tn10 insertion in the genome occur in the same 3.4-kilobase HindIII-SalI fragment. Insertion of TnphoA into this fragment produced amt::phoA fusions which gave high levels of alkaline phosphatase under nitrogen-limiting conditions but low levels during ammonia excess. This suggests that the amt product contains domains which are exported to the periplasm.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3