Suppression of host humoral immunity by Borrelia burgdorferi varies over the course of infection

Author:

Williams Megan T.12ORCID,Zhang Yan12,Pulse Mark E.3,Berg Rance E.1ORCID,Allen Michael S.12ORCID

Affiliation:

1. Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA

2. The Tick-Borne Disease Research Laboratory, University of North Texas Health Science Center, Fort Worth, Texas, USA

3. Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA

Abstract

ABSTRACT Borrelia burgdorferi , the spirochetal agent of Lyme disease, utilizes a variety of strategies to evade and suppress the host immune response, which enables it to chronically persist in the host. The resulting immune response is characterized by unusually strong IgM production and a lack of long-term protective immunity. Previous studies in mice have shown that infection with B. burgdorferi also broadly suppresses host antibody responses against unrelated antigens. Here, we show that mice infected with B. burgdorferi and concomitantly immunized with recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein had an abrogated antibody response to the immunization. To further define how long this humoral immune suppression lasts, mice were immunized at 2, 4, and 6 weeks post-infection. Suppression of host antibody production against the SARS-CoV-2 spike protein peaked at 2 weeks post-infection but continued for all timepoints measured. Antibody responses against the SARS-CoV-2 spike protein were also assessed following antibiotic treatment to determine whether this immune suppression persists or resolves following clearance of B. burgdorferi . Host antibody production against the SARS-CoV-2 spike protein returned to baseline following antibiotic treatment; however, anti-SARS-CoV-2 IgM remained high, comparable to levels found in B. burgdorferi -infected but untreated mice. Thus, our data demonstrate restored IgG responses following antibiotic treatment but persistently elevated IgM levels, indicating lingering effects of B. burgdorferi infection on the immune system following treatment.

Funder

UNT | Health Science Center, University of North Texas

State of Texas

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3