Lesion Formation and Antibody Response Induced by Papillomatous Digital Dermatitis-Associated Spirochetes in a Murine Abscess Model

Author:

Elliott Margaret K.1,Alt David P.1,Zuerner Richard L.1

Affiliation:

1. Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, Iowa 50010

Abstract

ABSTRACT Papillomatous digital dermatitis (PDD), also known as hairy heel wart, is a growing cause of lameness of cows in the U.S. dairy industry. Farms with PDD-afflicted cows experience economic loss due to treatment costs, decreased milk production, lower reproductive efficiency, and premature culling. While the exact cause of PDD is unknown, lesion development is associated with the presence of anaerobic spirochetes. This study was undertaken to investigate the virulence and antigenic relatedness of four previously isolated Treponema phagedenis -like spirochetes (1A, 3A, 4A, and 5B) by using a mouse abscess model with subcutaneous inoculation of 10 9 , 10 10 , and 10 11 spirochetes. Each of the PDD isolates induced abscess formation, with strain 3A causing cutaneous ulceration. Lesion development and antibody responses were dose dependent and differed significantly from those seen with the nonpathogenic human T. phagedenis strain. Strains 3A, 4A, and 5B showed two-way cross-reactivity with each other and a one-way cross-reaction with T. phagedenis . Strain 5B showed one-way cross-reactivity with 1A. None of the isolates showed cross-reactivity with T. denticola . In addition, distinct differences in immunoglobulin G subclass elicitation occurred between the PDD strains and T. phagedenis . From these data, we conclude that spirochetes isolated from PDD lesions have differential virulence and antigenic traits in vivo. Continuing investigation of these properties is important for the elucidation of virulence mechanisms and antigenic targets for vaccine development.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3