Author:
Santander Javier,Golden Greg,Wanda Soo-Young,Curtiss Roy
Abstract
ABSTRACTThe ability of bacterial pathogens to take up iron from the host during infection is necessary for their multiplication within the host. However, host high-affinity iron binding proteins limit levels of free iron in fluids and tissues. To overcome this deficiency of iron during infection, bacterial pathogens have developed iron uptake systems that are upregulated in the absence of iron, typically tightly controlled by the ferric uptake regulator (Fur) protein. The iron uptake system ofEdwardsiella ictaluri, a host-restricted pathogen of channel catfish (Ictalurus punctatus) and the main pathogen of this fish in aquaculture, is unknown. Here we describe theE. ictaluriFur protein, the iron uptake machinery controlled by Fur, and the effects offurgene deletion on virulence and immunogenicity in the fish host. Analysis of theE. ictaluriFur protein shows that it lacks the N-terminal region found in the majority of pathogen-encoded Fur proteins. However, it is fully functional in regulated genes encoding iron uptake proteins.E. ictalurigrown under iron-limited conditions upregulates an outer membrane protein (HemR) that shows heme-hemoglobin transport activity and is tightly regulated by Fur.In vivostudies showed that anE. ictaluriΔfurmutant is attenuated and immune protective in zebrafish (Danio rerio) and catfish (Ictalurus punctatus), triggering systemic immunity. We conclude that anE. ictaluriΔfurmutant could be an effective component of an immersion-oral vaccine for the catfish industry.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献