Structural Basis for Recombinatorial Permissiveness in the Generation of Anaplasma marginale Msp2 Antigenic Variants

Author:

Graça Telmo12ORCID,Silva Marta G.2,Kostyukova Alla S.3,Palmer Guy H.12

Affiliation:

1. The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA

2. Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA

3. The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA

Abstract

ABSTRACT Sequential expression of outer membrane protein antigenic variants is an evolutionarily convergent mechanism used by bacterial pathogens to escape host immune clearance and establish persistent infection. Variants must be sufficiently structurally distinct to escape existing immune effectors yet retain the core structural elements required for localization and function within the outer membrane. We examined this balance using Anaplasma marginale , which generates antigenic variants in the outer membrane protein Msp2 using gene conversion. The overwhelming majority of Msp2 variants expressed during long-term persistent infection are mosaics, derived by recombination of oligonucleotide segments from multiple alleles to form unique hypervariable regions (HVR). As a result, the mosaics are not under long-term selective pressure to encode a functional protein; consequently, we hypothesized that the Msp2 HVR is structurally permissive for mosaic expression. Using an integrated approach of predictive modeling with determination of the native Msp2 protein structure and function, we demonstrate that structured elements, most notably, β-sheets, are significantly concentrated in the highly conserved N- and C-terminal domains. In contrast, the HVR is overwhelmingly a random coil, with the structured α-helices and β-sheets being confined to the genomically defined structural tethers that separate the antigenically variable microdomains. This structure is supported by the surface exposure of the HVR microdomains and the slow diffusion-type porin function in native Msp2. Importantly, the predominance of the random coil provides plasticity for the formation of functional HVR mosaics and realization of the full potential of segmental gene conversion to dramatically expand the variant repertoire.

Funder

HHS National Institutes of Health

Fundação para a Ciência e Tecnologia

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3