Parent-to-Progeny Transfer and Recombination of T4rII Bacteriophage

Author:

Carlson Karin1,Kozinski Andrzej W.1

Affiliation:

1. Department of Medical Genetics and Graduate Group on Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

Transfer of parental, light (not substituted with 5-bromodeoxyuridine) 32 P-deoxyribonucleic acid (DNA) from rII mutants of T4 bacteriophage to heavy (5-bromodeoxyuridine-substituted) progeny in Escherichia coli B was less homogeneous than in wild phages. The net transfer was 5 to 20% of the value for wild T4 phage, and the parental contribution per progeny DNA molecule amounted to 7 to 100% of the genome. Three classes could be distinguished, based on the density distribution of parental label in CsCl analysis of the progeny phages. “Far recombined” phages contain parental material only in semiconservatively replicated subunits covalently attached to progeny DNA, amounting to 5 to 10% parental contribution per genome. “Intermediate recombinants” contain, aside from conventional recombinant DNA, parental DNA banding at the original, light density. This DNA may be unattached to heavy progeny DNA or attached by weak bonds which are very sensitive to shearing during the extraction procedure. The parental contribution is 10 to 50% per progeny DNA molecule in this class. “Conservative” phages band close to the parental, light density in CsCl; their DNA is purely light. When the parental phage is labeled with both 3 H-leucine (capsid) and 32 P (DNA), the specific activity of 3 H/ 32 P in the “conservative progeny” is 10 to 40% of that in the parental, showing that at least some of the 32 P in this area belongs to phages with parental DNA as the sole DNA component inside an unlabeled capsid, i.e., parental DNA which has been injected into the host and matured in a new capsid without replication or recombination. This phenomenon occurs to about the same extent in both single and multiple infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3