Affiliation:
1. Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
2. Department of Otolaryngology, University of Washington, Seattle, Washington
Abstract
ABSTRACT
Human papillomaviruses (HPVs) belonging to the
Betapapillomavirus
genus have recently been implicated in squamous cell carcinomas of the skin, though the mechanisms by which they initiate carcinogenesis are unclear. We show that human foreskin keratinocytes (HFKs) expressing several betapapillomavirus E6 (beta-E6) proteins display life span extension, but not to the extent seen in HFKs expressing HPV type 16 E6 (16E6). Additionally, we demonstrate that beta-E6 proteins can differentially activate telomerase. HFKs expressing 38E6 exhibit significant telomerase activity but to a lesser degree than that observed with 16E6; however, other beta-E6 proteins, including 5E6, 8E6, 20E6, and 22E6, exhibit low or background levels of telomerase activity. Utilizing glutathione
S
-transferase pull-down and coimmunoprecipitation experiments, the beta-E6 proteins were shown to interact with the cellular proteins E6-associated protein (E6AP) and NFX1-91, two proteins known to be important for telomerase activation by 16E6. Interestingly, the relative strength of the interaction between E6 and E6AP or NFX1-91 was proportionate to the activation of telomerase by each beta-E6 protein. To address the requirement for E6AP in telomerase activation by beta-E6 proteins, we utilized a shRNA to knock down endogenous levels of E6AP. Lysates with decreased levels of E6AP showed a reduced ability to activate telomerase, suggesting that E6AP is a necessary component. These data suggest that complex formation between E6, E6AP, and NFX1-91 is a critical step in mediating telomerase activation, which may be one contributing factor to cellular life span extension during human betapapillomavirus infection.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference41 articles.
1. Bartz, S. R., and M. A. Vodicka. 1997. Production of high-titer human immunodeficiency virus type 1 pseudotyped with vesicular stomatitis virus glycoprotein. Methods12:337-342.
2. Boyer, S. N., D. E. Wazer, and V. Band. 1996. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res.56:4620-4624.
3. Caldeira, S., R. Filotico, R. Accardi, I. Zehbe, S. Franceschi, and M. Tommasino. 2004. p53 mutations are common in human papillomavirus type 38-positive non-melanoma skin cancers. Cancer Lett.209:119-124.
4. The E6 and E7 Proteins of the Cutaneous Human Papillomavirus Type 38 Display Transforming Properties
5. Chung, H. K., C. Cheong, J. Song, and H. W. Lee. 2005. Extratelomeric functions of telomerase. Curr. Mol. Med.5:233-241.
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献