Peptidoglycan synthesis and structure in Staphylococcus haemolyticus expressing increasing levels of resistance to glycopeptide antibiotics

Author:

Billot-Klein D1,Gutmann L1,Bryant D1,Bell D1,Van Heijenoort J1,Grewal J1,Shlaes D M1

Affiliation:

1. L.R.M.A., Unité de Recherche Associée 1131 du Centre National de la Recherche Scientifique, Biochimie Moléculaire et Cellulaire, Paris, France.

Abstract

The structures of cytoplasmic peptidoglycan precursor and mature peptidoglycan of an isogenic series of Staphylococcus haemolyticus strains expressing increasing levels of resistance to the glycopeptide antibiotics teicoplanin and vancomycin (MICs, 8 to 32 and 4 to 16 microg/ml, respectively) were determined. High-performance liquid chromatography, mass spectrometry, amino acid analysis, digestion by R39 D,D-carboxypeptidase, and N-terminal amino acid sequencing were utilized. UDP-muramyl-tetrapeptide-D-lactate constituted 1.7% of total cytoplasmic peptidoglycan precursors in the most resistant strain. It is not clear if this amount of depsipeptide precursor can account for the levels of resistance achieved by this strain. Detailed structural analysis of mature peptidoglycan, examined for the first time for this species, revealed that the peptidoglycan of these strains, like that of other staphylococci, is highly cross-linked and is composed of a lysine muropeptide acceptor containing a substitution at its epsilon-amino position of a glycine-containing cross bridge to the D-Ala 4 of the donor, with disaccharide-pentapeptide frequently serving as an acceptor for transpeptidation. The predominant cross bridges were found to be COOH-Gly-Gly-Ser-Gly-Gly-NH2 and COOH-Ala-Gly-Ser-Gly-Gly-NH2. Liquid chromatography-mass spectrometry analysis of the peptidoglycan of resistant strains revealed polymeric muropeptides bearing cross bridges containing an additional serine in place of glycine (probable structures, COOH-Gly-Ser-Ser-Gly-Gly-NH2 and COOH-Ala-Gly-Ser-Ser-Gly-NH2). Muropeptides bearing an additional serine in their cross bridges are estimated to account for 13.6% of peptidoglycan analyzed from resistant strains of S. haemolyticus. A soluble glycopeptide target (L-Ala-gamma-D-iso-glutamyl-L-Lys-D-Ala-D-Ala) was able to more effectively compete for vancomycin when assayed in the presence of resistant cells than when assayed in the presence of susceptible cells, suggesting that some of the resistance was directed towards the cooperativity of glycopeptide binding to its target. These results are consistent with a hypothesis that alterations at the level of the cross bridge might interfere with the binding of glycopeptide dimers and therefore with the cooperative binding of the antibiotic to its target in situ. Glycopeptide resistance in S. haemolyticus may be multifactorial.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3