The Rpb6 Subunit of Fission Yeast RNA Polymerase II Is a Contact Target of the Transcription Elongation Factor TFIIS

Author:

Ishiguro Akira123,Nogi Yasuhisa3,Hisatake Koji3,Muramatsu Masami3,Ishihama Akira2

Affiliation:

1. School of Life Science, Graduate University for Advanced Studies, 1 and

2. Department of Molecular Genetics, National Institute of Genetics, 3 Mishima, Shizuoka 411-8540, and

3. Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-Gun, Saitama 350-0095, 2 Japan

Abstract

ABSTRACT The Rpb6 subunit of RNA polymerase II is one of the five subunits common to three forms of eukaryotic RNA polymerase. Deletion and truncation analyses of the rpb6 gene in the fission yeast Schizosaccharomyces pombe indicated that Rpb6, consisting of 142 amino acid residues, is an essential protein for cell viability, and the essential region is located in the C-terminal half between residues 61 and 139. After random mutagenesis, a total of 14 temperature-sensitive mutants were isolated, each carrying a single (or double in three cases and triple in one) mutation. Four mutants each carrying a single mutation in the essential region were sensitive to 6-azauracil (6AU), which inhibits transcription elongation by depleting the intracellular pool of GTP and UTP. Both 6AU sensitivity and temperature-sensitive phenotypes of these rpb6 mutants were suppressed by overexpression of TFIIS, a transcription elongation factor. In agreement with the genetic studies, the mutant RNA polymerases containing the mutant Rpb6 subunits showed reduced affinity for TFIIS, as measured by a pull-down assay of TFIIS-RNA polymerase II complexes using a fusion form of TFIIS with glutathione S -transferase. Moreover, the direct interaction between TFIIS and RNA polymerase II was competed by the addition of Rpb6. Taken together, the results lead us to propose that Rpb6 plays a role in the interaction between RNA polymerase II and the transcription elongation factor TFIIS.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3