Use of the Escherichia coli gene for asparagine synthetase as a selective marker in a shuttle vector capable of dominant transfection and amplification in animal cells.

Author:

Cartier M,Chang M W,Stanners C P

Abstract

A new dominant amplifiable selective system for use in bacterium-animal cell shuttle vectors was developed by the insertion of a 2-kilobase genomic fragment containing the cloned Escherichia coli gene for asparagine synthetase (AS) into the pBR322-simian virus 40 recombinant vector pSV2 so as to place the translational initiator codon for the bacterial AS about 1,000 base pairs downstream from the simian virus 40 early promoter. This new construct, pSV2-AS, retains bacterial sequences for transcriptional and translational initiation and so can express AS in bacteria. The construct can also complement AS- mutants of mammalian cells, giving AS+ transfectants capable of growth in medium lacking asparagine, with relatively high efficiency (about 300 colonies per microgram of DNA per 10(6) cells exposed). The vector can be amplified up to 100-fold in such AS+ transfectants by selection in asparagine-free medium containing increasing concentrations of the AS inhibitor beta-aspartyl hydroxamate. AS+ transfectants were found to be much more resistant to a second AS inhibitor, Albizziin, than were normal AS+ animal cell lines. This difference, which may indicate a strong resistance of the bacterial AS enzyme to Albizziin, was exploited to develop an effective selection for bacterial AS transfectants of a number of wild-type AS+ cell lines of rat, Chinese hamster, mouse, and human origin. LR-73 cells, a Chinese hamster AS+ cell line, were transfected with pSV2-AS with an efficiency of about 1,000 colonies per 0.5 microgram of DNA per 10(6) cells. The integrated construct in these cells was amplified by incubation of the transfectants in increasing concentrations of beta-aspartyl hydroxamate. Advantages and disadvantages of this new dominant, selectable, and amplifiable marker over markers commonly used in shuttle vectors are discussed.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3