Specific Alterations of Coxsackievirus B3 Eluted from Hela Cells

Author:

Crowell Richard L.1,Philipson Lennart1

Affiliation:

1. Department of Microbiology, The Wallenberg Laboratory, Uppsala University, Uppsala, Sweden

Abstract

After the attachment of radioactive coxsackievirus B3 to HeLa cells at 0 C and subsequent incubation at 37 C, 50 to 80% of attached virus radioactivity was eluted from the cells within 1 hr. Eluted virus had a buoyant density of 1.21 in a potassium tartrate gradient, sedimented more slowly than native virus in sucrose gradients, was resistant to ribonuclease, was unstable in CsCl centrifugation, and did not reattach to uninfected cells. Electrophoretic studies of sodium dodecyl sulfate-disrupted B3 virus in sodium dodecyl sulfate-polyacrylamide gels revealed four radioactive virus polypeptides (VP 1 to 4), of which the three largest migrated slightly faster than their poliovirus T1 counterparts. In contrast, electrophoretic analysis of eluted virus, after banding in a tartrate gradient or pelleting by centrifugation, showed the absence of the fastest migrating polypeptide, VP 4. VP 4 was recovered in the supernatant fluid when the eluted virions were removed by high-speed centrifugation. The results indicate that VP 4 is located at the surface of the native virion, and its dissociation from the capsid may represent the first specific alteration of the virion after virus-receptor interaction at the cell surface.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enterovirus entry and uncoating;Molecular Medical Microbiology;2024

2. Enteroviruses: The role of receptors in viral pathogenesis;Advances in Virus Research;2022

3. Antiviral Strategies Against (Non‐polio) Picornaviruses;New Drug Development for Known and Emerging Viruses;2021-12-03

4. Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate;PLOS Pathogens;2020-09-30

5. Molecular basis for the acid-initiated uncoating of human enterovirus D68;Proceedings of the National Academy of Sciences;2018-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3