A Primer on Infectious Disease Bacterial Genomics

Author:

Lynch Tarah12,Petkau Aaron3,Knox Natalie3,Graham Morag34,Van Domselaar Gary34

Affiliation:

1. Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada

2. Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada

3. National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada

4. Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

SUMMARY The number of large-scale genomics projects is increasing due to the availability of affordable high-throughput sequencing (HTS) technologies. The use of HTS for bacterial infectious disease research is attractive because one whole-genome sequencing (WGS) run can replace multiple assays for bacterial typing, molecular epidemiology investigations, and more in-depth pathogenomic studies. The computational resources and bioinformatics expertise required to accommodate and analyze the large amounts of data pose new challenges for researchers embarking on genomics projects for the first time. Here, we present a comprehensive overview of a bacterial genomics projects from beginning to end, with a particular focus on the planning and computational requirements for HTS data, and provide a general understanding of the analytical concepts to develop a workflow that will meet the objectives and goals of HTS projects.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,General Immunology and Microbiology,Epidemiology

Reference249 articles.

1. Portny SE , Austin J . 12 July 2002. Project management for scientists. American Association for the Advancement of Science, Washington, DC. http://www.sciencemag.org/careers/2002/07/project-management-scientists .

2. Ten Simple Rules for Reproducible Computational Research

3. Ten simple rules for managing high-throughput nucleotide sequencing data

4. The Metadata Coverage Index (MCI): A standardized metric for quantifying database metadata richness

5. Assuring the quality of next-generation sequencing in clinical laboratory practice

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3