Affiliation:
1. Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), Kizugawa, Kyoto, Japan
2. Green Phenol Development Co., Ltd., Kizugawa, Kyoto, Japan
3. Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
Abstract
ABSTRACT
Corynebacterium glutamicum
was metabolically engineered to produce 4-hydroxybenzoic acid (4-HBA), a valuable aromatic compound used as a raw material for the production of liquid crystal polymers and paraben.
C. glutamicum
was found to have a higher tolerance to 4-HBA toxicity than previously reported hosts used for the production of genetically engineered 4-HBA. To obtain higher titers of 4-HBA, we employed a stepwise overexpression of all seven target genes in the shikimate pathway in
C. glutamicum
. Specifically, multiple chromosomal integrations of a mutated
aroG
gene from
Escherichia coli
, encoding a 3-deoxy-
d
-arabinoheptulosonic acid 7-phosphate (DAHP) synthase, and wild-type
aroCKB
from
C. glutamicum
, encoding chorismate synthase, shikimate kinase, and 3-dehydroquinate synthase, were effective in increasing product titers. The last step of the 4-HBA biosynthesis pathway was recreated in
C. glutamicum
by expressing a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from the intestinal bacterium
Providencia rustigianii
. To enhance the yield of 4-HBA, we reduced the formation of by-products, such as 1,3-dihydroxyacetone and pyruvate, by deleting
hdpA
, a gene coding for a haloacid dehalogenase superfamily phosphatase, and
pyk
, a gene coding for a pyruvate kinase, from the bacterial chromosome. The maximum concentration of 4-HBA produced by the resultant strain was 36.6 g/liter, with a yield of 41% (mol/mol) glucose after incubation for 24 h in minimal medium in an aerobic growth-arrested bioprocess using a jar fermentor. To our knowledge, this is the highest concentration of 4-HBA produced by a metabolically engineered microorganism ever reported.
IMPORTANCE
Since aromatic compound 4-HBA has been chemically produced from petroleum-derived phenol for a long time, eco-friendly bioproduction of 4-HBA from biomass resources is desired in order to address environmental issues. In microbial chemical production, product toxicity often causes problems, but we confirmed that wild-type
C. glutamicum
has high tolerance to the target 4-HBA. A growth-arrested bioprocess using this microorganism has been successfully used for the production of various compounds, such as biofuels, organic acids, and amino acids. However, no production method has been applied for aromatic compounds to date. In this study, we screened for a novel final reaction enzyme possessing characteristics superior to those in previously employed microbial 4-HBA production. We demonstrated that the use of the highly 4-HBA-resistant UbiC from the intestinal bacterium
P. rustigianii
is very effective in increasing 4-HBA production.
Funder
the New Energy and Industrial Technology Development Organization (NEDO), Japan
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献