On the Evolution of Structure in Aminoacyl-tRNA Synthetases

Author:

O'Donoghue Patrick1,Luthey-Schulten Zaida1

Affiliation:

1. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Abstract

SUMMARY The aminoacyl-tRNA synthetases are one of the major protein components in the translation machinery. These essential proteins are found in all forms of life and are responsible for charging their cognate tRNAs with the correct amino acid. The evolution of the tRNA synthetases is of fundamental importance with respect to the nature of the biological cell and the transition from an RNA world to the modern world dominated by protein-enzymes. We present a structure-based phylogeny of the aminoacyl-tRNA synthetases. By using structural alignments of all of the aminoacyl-tRNA synthetases of known structure in combination with a new measure of structural homology, we have reconstructed the evolutionary history of these proteins. In order to derive unbiased statistics from the structural alignments, we introduce a multidimensional QR factorization which produces a nonredundant set of structures. Since protein structure is more highly conserved than protein sequence, this study has allowed us to glimpse the evolution of protein structure that predates the root of the universal phylogenetic tree. The extensive sequence-based phylogenetic analysis of the tRNA synthetases (Woese et al., Microbiol. Mol. Biol. Rev. 64: 202-236, 2000) has further enabled us to reconstruct the complete evolutionary profile of these proteins and to make connections between major evolutionary events and the resulting changes in protein shape. We also discuss the effect of functional specificity on protein shape over the complex evolutionary course of the tRNA synthetases.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3