Development of a Bacillus subtilis -Based Rotavirus Vaccine

Author:

Lee Sangun1234,Belitsky Boris R.1234,Brinker James P.1234,Kerstein Kathryn O.1234,Brown David W.1234,Clements John D.1234,Keusch Gerald T.1234,Tzipori Saul1234,Sonenshein Abraham L.1234,Herrmann John E.1234

Affiliation:

1. Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536

2. Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111

3. Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112

4. Department of International Health, Boston University School of Public Health, Boston, Massachusetts 02118

Abstract

ABSTRACT Bacillus subtilis vaccine strains engineered to express either group A bovine or murine rotavirus VP6 were tested in adult mice for their ability to induce immune responses and provide protection against rotavirus challenge. Mice were inoculated intranasally with spores or vegetative cells of the recombinant strains of B. subtilis . To enhance mucosal immunity, whole cholera toxin (CT) or a mutant form (R192G) of Escherichia coli heat-labile toxin (mLT) were included as adjuvants. To evaluate vaccine efficacy, the immunized mice were challenged orally with EDIM EW murine rotavirus and monitored daily for 7 days for virus shedding in feces. Mice immunized with either VP6 spore or VP6 vegetative cell vaccines raised serum anti-VP6 IgG enzyme-linked immunosorbent assay (ELISA) titers, whereas only the VP6 spore vaccines generated fecal anti-VP6 IgA ELISA titers. Mice in groups that were immunized with VP6 spore vaccines plus CT or mLT showed significant reductions in virus shedding, whereas the groups of mice immunized with VP6 vegetative cell vaccines showed no difference in virus shedding compared with mice immunized with control spores or cells. These results demonstrate that intranasal inoculation with B. subtilis spore-based rotavirus vaccines is effective in generating protective immunity against rotavirus challenge in mice.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3