Role of immunoglobulin G in killing of Borrelia burgdorferi by the classical complement pathway

Author:

Kochi S K1,Johnson R C1

Affiliation:

1. Department of Microbiology, Medical School, University of Minnesota, Minneapolis 55455.

Abstract

The antibody and complement requirements for killing of Borrelia burgdorferi 297 by normal human serum (NHS) and NHS plus immunoglobulin G (IgG) were examined. B. burgdorferi activated both the alternative and classical complement pathways in NHS. In NHS chelated with 10 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid plus 4 mM MgCl2 (Mg-EGTA) to block classical pathway activation, consumption (activation) of total hemolytic complement, complement component 3 (C3), and C9 by B. burgdorferi was observed. Furthermore, challenge of unchelated NHS with 297 cells resulted in the consumption of C4, in addition to an increase in C3 and C9 consumption over that observed in chelated serum. In spite of complement activation, B. burgdorferi was resistant to the nonspecific bactericidal activity of NHS. The addition of human anti-B. burgdorferi IgG to NHS, however, resulted in the complete killing of 297 cells. Bactericidal activity of this serum was abrogated if NHS was immunochemically depleted of C1, indicating that killing was mediated by the classical pathway. The manifestation of bactericidal activity was accompanied by a large increase in total complement and C3 consumption over that observed in NHS alone. Under similar conditions, only a minimal increase in C9 consumption was observed. No increase in total complement consumption was observed if NHS plus anti-B. burgdorferi IgG was treated with Mg-EGTA prior to challenge. The results of these experiments demonstrate that B. burgdorferi is resistant to the nonspecific bactericidal activity of NHS, in spite of classical and alternative complement pathway activation. B. burgdorferi is sensitive to serum, however, in the presence of IgG, which mediates bacterial killing through the classical complement pathway.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference48 articles.

1. Degree of antibodyindependent activation of the classical complement pathway by Kl E. coli differs with 0-antigen type and correlates with virulence of meningitis in newborns;Achtman M.;Infect. Immun.,1984

2. Isolation and cultivation of Lyme disease spirochetes;Barbour A. G.;Yale J. Biol. Med.,1984

3. Biology of Borrelia species;Barbour A. G.;Microbiol. Rev.,1986

4. Chemical and biological characterization of a lipopolysaccharide extracted from the Lyme disease spirochete (Borrelia burgdorferi);Beck G.;J. Infect. Dis.,1985

5. Multimeric C9 within C5b-9 is required for inner membrane damage to Escherichia coli J5 during complement killing;Block E. F.;J. Immunol.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3