Lipopolysaccharide structure determines ionic and hydrophobic binding of a cationic antimicrobial neutrophil granule protein

Author:

Farley M M1,Shafer W M1,Spitznagel J K1

Affiliation:

1. Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322.

Abstract

Bactericidal activity and binding of a 57,000-dalton cationic antimicrobial neutrophil granule protein (CAP57) are determined by the presence on bacteria of O-antigen polysaccharide chains and the availability of negatively charged groups in the lipid A region, the inner core region, or both regions of lipopolysaccharide. Polymyxin B (PMB)-resistant mutants with well-defined alterations in lipid A structure and charge (pmrA) are also more resistant to CAP57. We used biologically active radioiodinated CAP57 to study the characteristics and kinetics of binding to a sensitive Rb lipopolysaccharide chemotype, Salmonella typhimurium SH9178, and the relatively resistant pmrA mutant strain SH7426. Binding occurred rapidly and was specific and saturable. Because CAP57 appears to be bound in a manner similar to that of PMB, competition binding studies were performed. Excess PMB did compete with CAP57 for binding to SH9178. Nonapeptide, a polycationic derivative of PMB that has lost its hydrophobic portions, demonstrated a marked decrease in ability to compete for binding with CAP57 compared with PMB. This demonstrated the importance of hydrophobic binding in the interaction of CAP57 with the microbial surface. Thus, we have shown that binding of CAP57 to SH9178 is specific, saturable, and similar to binding of PMB. Both hydrophobic and ionic properties of CAP57 appear to be necessary for binding.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3