Affiliation:
1. Molecular Biology Institute and Department of Biology, San Diego State University, California 92182, USA.
Abstract
The vesicular stomatitis virus (VSV) polymerase is thought to initiate transcription of its genome by first copying a small leader RNA complementary to the 3' end of the template. The polR VSV mutants, in contrast to wild-type virus, frequently read through the leader termination site during transcription in vitro. To shed light on polymerase termination and reinitiation events at the crucial leader-N gene junction, we employed RNase protection assays to precisely measure molar ratios of leader, N, and readthrough transcript accumulation in vitro. Wild-type virus synthesized essentially equimolar amounts of leader and N transcripts, but, unexpectedly, the polR1 mutant yielded about twice as much N mRNA as leader (ratio of 1.9 +/- 0.1). Primer extension assays ruled out an increase in abortive N transcript synthesis for polR1. Transcription entailed multiple rounds of synthesis, with transcript ratios remaining the same after 0.5 or 2 h of synthesis, ruling out a significant contribution from polymerases "pre-positioned" at the N gene. No significant degradation of either leader or N transcripts was observed after incubating purified products with virions. Our data lead us to conclude that transcription can initiate internally at the N gene, at least in the case of polR1 VSV. We propose, however, that productive internal initiation of transcription is a fundamental property of the VSV polymerase and that of related viruses. A model postulating two distinct polymerase complexes, one for leader synthesis and one for internal initiation, is presented.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献