Subclonal components of consensus fitness in an RNA virus clone

Author:

Duarte E A1,Novella I S1,Ledesma S1,Clarke D K1,Moya A1,Elena S F1,Domingo E1,Holland J J1

Affiliation:

1. Department of Biology, University of California, San Diego, La Jolla 92093-0116.

Abstract

Most RNA virus populations exhibit extremely high mutation frequencies which generate complex, genetically heterogeneous populations referred to as quasi-species. Previous work has shown that when a large spectrum of the quasi-species is transferred, natural selection operates, leading to elimination of noncompetitive (inferior) genomes and rapid gains in fitness. However, whenever the population is repeatedly reduced to a single virion, variable declines in fitness occur as predicted by the Muller's ratchet hypothesis. Here, we quantitated the fitness of 98 subclones isolated from an RNA virus clonal population. We found a normal distribution around a lower fitness, with the average subclone being less fit than the parental clonal population. This finding demonstrates the phenotypic diversity in RNA virus populations and shows that, as expected, a large fraction of mutations generated during virus replication is deleterious. This clarifies the operation of Muller's ratchet and illustrates why a large number of virions must be transferred for rapid fitness gains to occur. We also found that repeated genetic bottleneck passages can cause irregular stochastic declines in fitness, emphasizing again the phenotypic heterogeneity present in RNA virus populations. Finally, we found that following only 60 h of selection (15 passages in which virus yields were harvested after 4 h), RNA virus populations can undergo a 250% average increase in fitness, even on a host cell type to which they were already well adapted. This is a remarkable ability; in population biology, even a much lower fitness gain (e.g., 1 to 2%) can represent a highly significant reproductive advantage. We discuss the biological implications of these findings for the natural transmission and pathogenesis of RNA viruses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3