Affiliation:
1. Fermentation Research Institute, Agency of Industrial Science and Technology, Ibaraki, Japan.
Abstract
An 8-kilobase HindIII fragment carrying the histidase gene (hutH) and its regulatory region (hutP), from the Bacillus subtilis histidine utilization (hut) operon, was cloned in the temperate bacteriophage phi 105. Histidine utilization was restored in a hutH1 mutant by the specialized transducing phage (phi 105hutH11). The histidase gene in phi 105hutH11 was inducible and was shown to be under catabolite repression. The nucleotide sequence of 3,932 base pairs including the hutH and hutP loci revealed three open reading frames (ORFs). The molecular weights of ORF1 and ORF2 proteins were calculated to be 16,576 (151 amino acid residues) and 55,675 (508 amino acid residues), respectively. Reverse transcriptase mapping experiments showed that the putative promoter for the hut operon could be recognized by RNA polymerase sigma 43. The transcript starts at an adenosine residue 32 base pairs upstream from the initiation codon of ORF1. hutH+-transforming activity was found in ORF2, indicating that ORF2 encoded the histidase. A hutP1 mutation was determined as a substitution of an amino acid in ORF1. By using a specialized transducing phage containing the wild-type ORF1 gene, it was demonstrated that the presence of ORF1 protein in trans was absolutely required for the induction of the hut operon in a hutP1 mutant. These data strongly suggested that ORF1 encodes a positive regulator of the hut operon.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献