Isolation and characterization of endoglucanases 1 and 2 from Bacteroides succinogenes S85

Author:

McGavin M1,Forsberg C W1

Affiliation:

1. Department of Microbiology, University of Guelph, Guelph, Ontario, Canada.

Abstract

Two endoglucanases designated EG1 and EG2 were purified by column chromatography from the nonsedimentable extracellular culture fluid of Bacteroides succinogenes S85. They accounted for approximately 32 and 11%, respectively, of the total endoglucanase present in the nonsedimentable fraction. The most active enzyme (EG1) had a molecular weight of 65,000, pI of 4.8, and temperature and pH optima of 39 degrees C and 6.4, respectively. The Km for carboxymethyl cellulose was 3.6 mg/ml, and the Vmax was 84 U/mg. The major products of cellulose hydrolysis catalyzed by EG1 were cellotriose and cellobiose. EG2 was present as two components with molecular weights of 118,000 and 94,000. The two components had nearly identical cyanogen bromide peptide maps, thereby indicating that the 94,000-dalton component was a proteolytic degradation product of the 118,000-dalton enzyme. The larger component, which was more abundant in the culture fluid than the smaller form was, had a Km of 12.2 mg/ml and a Vmax of 10.4 U/mg. It was a basic protein with a pI of 9.4, a temperature optimum of 39 degrees C, and a pH optimum of 5.8. The major product of cellulose hydrolysis was cellotetraose. EG2 exhibited specific binding to acid-swollen cellulose, whereas EG1 did not, and neither of them had affinity for crystalline cellulose. Based on the substrate specificities and the affinities of the two enzymes for cellulose, we postulated that EG2 is involved in the early stages of cellulose hydrolysis and that EG1 is active primarily on the products arising from EG2.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3