Chromosomal beta-lactamase expression and resistance to beta-lactam antibiotics in Proteus vulgaris and Morganella morganii

Author:

Yang Y J1,Livermore D M1

Affiliation:

1. Department of Medical Microbiology, London Hospital Medical College, United Kingdom.

Abstract

Indole-positive members of the Proteeae usually have inducible expression of chromosomal beta-lactamases. Mutants with stably derepressed beta-lactamase expression occur in inducible populations at frequencies in the range of 10(-6) to 10(-8). The contribution of these beta-lactamases to drug resistance was examined in Morganella morganii and Proteus vulgaris. The M. morganii enzyme was a high-molecular-weight (49,000) class I cephalosporinase with low Vmax rates for ampicillin, carbenicillin, and and broad-spectrum cephalosporins. The P. vulgaris enzyme had a lower molecular weight (32,000) and high Vmax rates for ampicillin, cephaloridine, cefotaxime, and ceftriaxone. Imipenem and cefoxitin inactivated the P. vulgaris enzyme but were low-Vmax, low-Km substrates for that of M. morganii. Despite these differences, the two beta-lactamases caused similar resistance profiles. Ampicillin and cephaloridine were strong inducers for both species, and beta-lactamase-inducible strains and their stably derepressed mutants were resistant, whereas basal mutants (those with low-level uninducible beta-lactamase) were susceptible to these two compounds. Mezlocillin, cefotaxime, ceftriaxone, and (usually) carbenicillin were almost equally active against beta-lactamase-inducible organisms and their basal mutants, but were less active against stably derepressed mutants. This behavior reflected the beta-lactamase lability of these drugs, coupled with their weak inducer activity below the MIC. Carbenicillin was a labile strong inducer for a single P. vulgaris strain, and inducible enzyme was protective against the drug in this atypical organism. Cefoxitin and imipenem, both strong inducers below the MIC, were almost equally active against beta-lactamase-inducible organisms and their basal and stably derepressed mutants.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3