Discovery of a rhizobial RNA that is essential for symbiotic root nodule development

Author:

Ebeling S1,Kündig C1,Hennecke H1

Affiliation:

1. Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zurich, Switzerland.

Abstract

All of the Azorhizobium, Bradyrhizobium, and Rhizobium genes known to be involved in the development of nitrogen-fixing legume root nodules are genes that code for proteins. Here we report the first exception to this rule: the sra gene; it was discovered during the genetic analysis of a Bradyrhizobium japonicum Tn5 mutant (strain 259) which had a severe deficiency in colonizing soybean nodules. A DNA region as small as 0.56 kb cloned from the parental wild type restored a wild-type phenotype in strain 259 by genetic complementation. The sra gene was located on this fragment, sequenced, and shown to be transcribed into a 213-nucleotide RNA. Results obtained with critical point mutations in the sra gene proved that the transcript was not translated into protein; rather, it appeared to function as an RNA molecule with a certain stem-and-loop secondary structure. We also detected an sra homolog in Rhizobium meliloti which, when cloned and transferred to B. japonicum mutant 259, fully restored symbiotic effectiveness in that strain. We propose several alternative functions for the sra gene product, of which that as a regulatory RNA for gene expression may be the most probable one.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3