Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes

Author:

Kozloff L M1,Turner M A1,Arellano F1

Affiliation:

1. Department of Microbiology, University of California, San Francisco 94143-0404.

Abstract

The preliminary finding that nonprotein additions to the protein product of the ice-nucleating gene of Pseudomonas syringae or Erwinia herbicola are essential for ice nucleation at the warmest temperatures has led to experiments aimed at identifying possible linkages between the ice protein and the other components. It appears that the protein is coupled to various sugars through N- and O-glycan linkages. Mannose residues are apparently bound via an N-glycan bond to the amide nitrogen of one or more of the three essential asparagine residues in the unique amino-terminal portion of the protein. In turn, these mannose residues are involved in the subsequent attachment of phosphatidylinositol to the nucleation structure. This phosphatidylinositol-mannose-protein structure is the critical element in the class A nucleating structure. In addition to sugars attached to the asparagine residues, additional sugar residues appear to be attached by O-glycan linkages to serine and threonine residues in the primary repeating octapeptide, which makes up 70% of the total ice protein. These additional sugar residues include galactose and glucosamine and most likely additional mannose residues. These conclusions were based on (i) the changes in ice-nucleating activity due to the action of N- and O-glycanases, alpha- and beta-mannosidoses, and beta-galactosidase; (ii) immunoblot analyses of ice proteins in cell extracts after enzyme treatments; and (iii) the properties of transformed Ice+ Escherichia coli cells containing plasmids with defined amino-terminal and carboxyl-terminal deletions in the ice gene. Finally, evidence is presented that these sugar residues may play a role in aggregating the ice gene lipoglycoprotein compound into larger aggregates, which are the most effective ice nucleation structures.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3