Affiliation:
1. Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Rutgers, Piscataway 08854.
Abstract
Local anesthetics are known to reduce the level of OmpF and increase the synthesis of OmpC in the outer membrane of Escherichia coli K-12. It has been shown that the anesthetics procaine and phenethyl alcohol (PEA) act at the transcriptional level for ompF and ompC and that in the case of procaine, its action is dependent on EnvZ, the membrane-bound signal transducer required for ompF and ompC expression. In an effort to further understand how anesthetics regulate ompF and ompC expression, we have analyzed the DNA binding properties of OmpR (the transcriptional activator protein for ompF and ompC genes) from cells treated with procaine or PEA. Treatment of a wild-type cell with either anesthetic converted OmpR from a low-affinity DNA binding form to a high-affinity DNA binding form. The change in DNA binding affinity was correlated with alterations in outer membrane porin profiles and could occur in the absence of protein synthesis. A strain lacking EnvZ was unable to respond to procaine to produce either the shift in the OmpR DNA binding property or cause any change in the outer membrane porin profile. PEA treatment was also dependent on EnvZ for the alteration in the OmpR DNA binding property, but it could induce ompC expression in the absence of EnvZ. Further studies suggest that the amino-terminal region of EnvZ is responsible for the procaine signalling. Our results indicate that procaine and PEA regulate ompF and ompC expression by modifying the DNA binding properties of OmpR through EnvZ signal transduction.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献