Procaine, a local anesthetic, signals through the EnvZ receptor to change the DNA binding affinity of the transcriptional activator protein OmpR

Author:

Rampersaud A1,Inouye M1

Affiliation:

1. Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Rutgers, Piscataway 08854.

Abstract

Local anesthetics are known to reduce the level of OmpF and increase the synthesis of OmpC in the outer membrane of Escherichia coli K-12. It has been shown that the anesthetics procaine and phenethyl alcohol (PEA) act at the transcriptional level for ompF and ompC and that in the case of procaine, its action is dependent on EnvZ, the membrane-bound signal transducer required for ompF and ompC expression. In an effort to further understand how anesthetics regulate ompF and ompC expression, we have analyzed the DNA binding properties of OmpR (the transcriptional activator protein for ompF and ompC genes) from cells treated with procaine or PEA. Treatment of a wild-type cell with either anesthetic converted OmpR from a low-affinity DNA binding form to a high-affinity DNA binding form. The change in DNA binding affinity was correlated with alterations in outer membrane porin profiles and could occur in the absence of protein synthesis. A strain lacking EnvZ was unable to respond to procaine to produce either the shift in the OmpR DNA binding property or cause any change in the outer membrane porin profile. PEA treatment was also dependent on EnvZ for the alteration in the OmpR DNA binding property, but it could induce ompC expression in the absence of EnvZ. Further studies suggest that the amino-terminal region of EnvZ is responsible for the procaine signalling. Our results indicate that procaine and PEA regulate ompF and ompC expression by modifying the DNA binding properties of OmpR through EnvZ signal transduction.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3