Isolation of Escherichia coli mutants defective in uptake of molybdate

Author:

Hemschemeier S1,Grund M1,Keuntje B1,Eichenlaub R1

Affiliation:

1. Gentechnologie/Mikrobiologie, Fakultät für Biologie, Universität Bielefeld, Germany.

Abstract

For the study of molybdenum uptake by Escherichia coli, we generated Tn5lac transposition mutants, which were screened for the pleiotropic loss of molybdoenzyme activities. Three mutants A1, A4, and M22 were finally selected for further analysis. Even in the presence of 100 microM molybdate in the growth medium, no active nitrate reductase, formate dehydrogenase, and trimethylamine-N-oxide reductase were detected in these mutants, indicating that the intracellular supply of molybdenum was not sufficient. This was also supported by the observation that introduction of plasmid pWK225 carrying the complete nif regulon of Klebsiella pneumoniae did not lead to a functional expression of nitrogenase. Finally, molybdenum determination by induced coupled plasma mass spectroscopy confirmed a significant reduction of cell-bound molybdenum in the mutants compared with that in wild-type E. coli, even at high molybdate concentrations in the medium. A genomic library established with the plasmid mini-F-derived cop(ts) vector pJE258 allowed the isolation of cosmid pBK229 complementing the molybdate uptake deficiency of the chlD mutant and the Tn5lac-induced mutants. Certain subfragments of pBK229 which do not contain the chlD gene are still able to complement the Tn5lac mutants. Mapping experiments showed that the Tn5lac insertions did not occur within the chromosomal region present in pBK229 but did occur very close to that region. We assume that the Tn5lac insertions have a polar effect, thus preventing the expression of transport genes, or that a positively acting regulatory element was inactivated.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3