Affiliation:
1. Biology Department, Indiana University, Bloomington, Indiana 47405-6801
Abstract
SUMMARY
When Bacteria, Archaea, and Eucarya separated from each other, a great deal of evolution had taken place. Only then did extensive diversity arise. The bacteria split off with the new property that they had a sacculus that protected them from their own turgor pressure. The saccular wall of murein (or peptidoglycan) was an effective solution to the osmotic pressure problem, but it then was a target for other life-forms, which created lysoymes and β-lactams. The β-lactams, with their four-member strained rings, are effective agents in nature and became the first antibiotic in human medicine. But that is by no means the end of the story. Over evolutionary time, bacteria challenged by β-lactams evolved countermeasures such as β-lactamases, and the producing organisms evolved variant β-lactams. The biology of both classes became evident as the pharmaceutical industry isolated, modified, and produced new chemotherapeutic agents and as the properties of β-lactams and β-lactamases were examined by molecular techniques. This review attempts to fit the wall biology of current microbes and their clinical context into the way organisms developed on this planet as well as the changes arising since the work done by Fleming. It also outlines the scientific advances in our understanding of this broad area of biology.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,General Immunology and Microbiology,Epidemiology
Reference74 articles.
1. Abramson, E. P., and E. Chain. 1940. An enzyme from bacteria able to destroy penicillin. Nature146:837.
2. Barlow, M., and B. G. Hall. 2002. Phylogenetic analysis shows that OXA β-lactamase genes have been on plasmids for millions of years. J. Mol. Evol.55:314-321.
3. Brown, J. T. R., C. J. Douady, M. J. Italia, W. E. Marshall, and M. J. Stanhope. 2001. Universal trees based on large combined protein sequence data sets. Nat. Genet.28:281-285.
4. Bush, K. 1999. β-Lactamases of increasing clinical importance. Curr. Pharm. Design5:839-845.
5. Bush, K. 2001. New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin. Infect. Dis.32:1085-1089.
Cited by
193 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献