Characterization of Wild-Type and Cidofovir-Resistant Strains of Camelpox, Cowpox, Monkeypox, and Vaccinia Viruses

Author:

Smee Donald F.1,Sidwell Robert W.1,Kefauver Debbie2,Bray Mike2,Huggins John W.2

Affiliation:

1. Institute for Antiviral Research, Utah State University, Logan, Utah 84322-5600

2. Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702-5011

Abstract

ABSTRACT Cidofovir {[( S )-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine] [HPMPC]}-resistant forms of camelpox, cowpox, monkeypox, and vaccinia viruses were developed by prolonged passage in Vero 76 cells in the presence of drug. Eight- to 27-fold-higher concentrations of cidofovir were required to inhibit the resistant viruses than were needed to inhibit the wild-type (WT) viruses. Resistant viruses were characterized by determining their cross-resistance to other antiviral compounds, examining their different replication abilities in two cell lines, studying the biochemical basis of their drug resistance, and assessing the degrees of their virulence in mice. These viruses were cross resistant to cyclic HPMPC and, with the exception of vaccinia virus, to ( S )-1-(3-hydroxy-2-phosphonylmethoxypropyl)adenine. Three of the four resistant cowpox and monkeypox viruses exhibited reduced abilities to infect and replicate in 3T3 cells compared to their abilities in Vero 76 cells. Compared to the WT virus polymers the resistant cowpox virus DNA polymerase was 8.5-fold less sensitive to inhibition by cidofovir diphosphate, the active form of the drug. Intracellular phosphorylation of [ 3 H]cidofovir was not stimulated or inhibited by infection with resistant cowpox virus. In intranasally infected BALB/c mice, WT cowpox virus was 80-fold more virulent than the resistant virus. Cidofovir treatment (100 mg/kg of body weight, given one time only as early as 5 min after virus challenge) of a resistant cowpox virus infection could not protect mice from mortality. However, the drug prevented mortality in 80 to 100% of the mice treated with a single 100-mg/kg dose at 1, 2, 3, or 4 days after WT virus challenge. By application of these results to human orthopoxvirus infections, it is anticipated that resistant viruses may be untreatable with cidofovir but their virulence may be attenuated. Studies will need to be conducted with cidofovir-resistant monkeypox virus in monkeys to further support these hypotheses.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3