Affiliation:
1. Department of Biology, University of California, San Diego, La Jolla, California 92037
Abstract
Colicinogenic factor E1 (ColE1) is present in
Escherichia coli
strain JC411 (ColE1) cells to the extent of about 24 copies per cell. This number does not appear to vary in situations which give rise to twofold differences in the amount of chromosomal deoxyribonucleic acid (DNA) present per cell. If cells are grown in the absence of glucose, approximately 80% of the ColE1 molecules can be isolated as strand-specific DNA-protein relaxation complexes. When glucose is present in the medium, only about 30% of the plasmid molecules can be isolated as relaxation complexes. Medium shift experiments in which glucose was removed from the medium indicate that within 15 min after the shift the majority (>60%) of the plasmid can be isolated as relaxation complex. This rapid shift to the complexed state is accompanied by a two- to threefold increase in the rate of plasmid replication. The burst of replication and the shift to the complexed state are both inhibited by the presence of chloramphenicol. Inhibition of protein synthesis in log cultures by the addition of chloramphenicol or amino acid starvation allows ColE1 DNA to continue replicating long after chromosomal replication has ceased. Under these conditions, noncomplexed plasmid DNA accumulates while the amount of DNA that can be isolated in the complexed state remains constant at the level that existed prior to treatment. In the presence of chloramphenicol, there appears to be a random dissociation and association of ColE1 DNA and “relaxation protein” during or between rounds of replication.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
357 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献