Pharmacodynamics of Moxifloxacin, Meropenem, Caspofungin and their Combinations Against In Vitro Polymicrobial Inter-kingdom Biofilms

Author:

Ruiz-Sorribas Albert1,Poilvache Hervé23ORCID,Van Bambeke Françoise1ORCID

Affiliation:

1. Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.

2. Laboratoire de neuro musculo squelettique, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium.

3. Orthopaedic surgery department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.

Abstract

Biofilms colonize medical devices and are often recalcitrant to antibiotics. Inter-kingdom biofilms, when at least a bacterium and a fungus are co-isolated, increase the likelihood of therapeutic failures. In this work, a three-species in vitro biofilm model including S. aureus , E. coli and C. albicans was used to study the activity of the antibiotics moxifloxacin and meropenem, the antifungal caspofungin, and combinations of them against inter-kingdom biofilms. The culturable cells and total biomass were evaluated to determine the pharmacodynamic parameters of the drug response for the incubation with the drugs alone. The synergic or antagonistic effects (increased/decreased effects) of the combination of drugs were analysed with the highest single agent method. Biofilms were imaged in confocal microscopy after live/dead staining. The drugs had limited activity when used alone against single-, dual- or three-species biofilms. When used in combination, additive effects were observed against single- or dual-species biofilms, and increased effects (synergy) against biomass of three-species biofilms. In addition, the two antibiotics showed different patterns, moxifloxacin being more active when targeting S. aureus and meropenem when targeting E. coli . All these observations were confirmed by confocal microscopy images. Our findings highlight the interest in combining caspofungin with antibiotics against inter-kingdom biofilms.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3