Defining and Combating the Mechanisms of Triclosan Resistance in Clinical Isolates of Staphylococcus aureus

Author:

Fan Frank1,Yan Kang1,Wallis Nicola G.1,Reed Shannon1,Moore Terrance D.1,Rittenhouse Stephen F.1,DeWolf Walter E.1,Huang Jianzhong1,McDevitt Damien1,Miller William H.1,Seefeld Mark A.1,Newlander Kenneth A.1,Jakas Dalia R.1,Head Martha S.2,Payne David J.1

Affiliation:

1. Microbial, Musculoskeletal and Proliferative Diseases CEDD

2. Computational and Structural Sciences, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania 19426

Abstract

ABSTRACT The MICs of triclosan for 31 clinical isolates of Staphylococcus aureus were 0.016 μg/ml (24 strains), 1 to 2 μg/ml (6 strains), and 0.25 μg/ml (1 strain). All the strains for which triclosan MICs were elevated (>0.016 μg/ml) showed three- to fivefold increases in their levels of enoyl-acyl carrier protein (ACP) reductase (FabI) production. Furthermore, strains for which triclosan MICs were 1 to 2 μg/ml overexpressed FabI with an F204C alteration. Binding studies with radiolabeled NAD + demonstrated that this change prevents the formation of the stable triclosan-NAD + -FabI complex, and both this alteration and its overexpression contributed to achieving MICs of 1 to 2 μg/ml for these strains. Three novel, potent inhibitors of FabI (50% inhibitory concentrations, ≤64 nM) demonstrated up to 1,000-fold better activity than triclosan against the strains for which triclosan MICs were elevated. None of the compounds tested from this series formed a stable complex with NAD + -FabI. Consequently, although the overexpression of wild-type FabI gave rise to an increase in the MICs, as expected, overexpression of FabI with an F204C alteration did not cause an additional increase in resistance. Therefore, this work identifies the mechanisms of triclosan resistance in S. aureus , and we present three compounds from a novel chemical series of FabI inhibitors which have excellent activities against both triclosan-resistant and -sensitive clinical isolates of S. aureus .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3