Affiliation:
1. Microbial, Musculoskeletal and Proliferative Diseases CEDD
2. Computational and Structural Sciences, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania 19426
Abstract
ABSTRACT
The MICs of triclosan for 31 clinical isolates of
Staphylococcus aureus
were 0.016 μg/ml (24 strains), 1 to 2 μg/ml (6 strains), and 0.25 μg/ml (1 strain). All the strains for which triclosan MICs were elevated (>0.016 μg/ml) showed three- to fivefold increases in their levels of enoyl-acyl carrier protein (ACP) reductase (FabI) production. Furthermore, strains for which triclosan MICs were 1 to 2 μg/ml overexpressed FabI with an F204C alteration. Binding studies with radiolabeled NAD
+
demonstrated that this change prevents the formation of the stable triclosan-NAD
+
-FabI complex, and both this alteration and its overexpression contributed to achieving MICs of 1 to 2 μg/ml for these strains. Three novel, potent inhibitors of FabI (50% inhibitory concentrations, ≤64 nM) demonstrated up to 1,000-fold better activity than triclosan against the strains for which triclosan MICs were elevated. None of the compounds tested from this series formed a stable complex with NAD
+
-FabI. Consequently, although the overexpression of wild-type FabI gave rise to an increase in the MICs, as expected, overexpression of FabI with an F204C alteration did not cause an additional increase in resistance. Therefore, this work identifies the mechanisms of triclosan resistance in
S. aureus
, and we present three compounds from a novel chemical series of FabI inhibitors which have excellent activities against both triclosan-resistant and -sensitive clinical isolates of
S. aureus
.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献