Affiliation:
1. Clinical Virology, Glaxo Wellcome Research and Development, Stevenage, United Kingdom SG1 2NY
Abstract
ABSTRACT
Replication of mixtures of two or more human immunodeficiency virus type 1 (HIV-1) variants would be expected to result in the eventual selection of the fittest virus due to Darwinian competition among the variants. The relative proportions of known HIV-1 variants (which may differ only by a single nucleotide from a standard “wild-type” virus, HIV-1
HXB2
) in mixed viral cultures were quantified by analysis of automated sequence signals of reverse transcriptase PCR products. With this method, the relative levels of replicative fitness of several zidovudine (3′-azidothymidine)-resistant HIV-1
HXB2
variants were estimated under controlled in vitro conditions by measuring the rate of change in the proportions of viral variants as they replicated in cell cultures both in the presence and in the absence of drug selection pressure. These variants were engineered to contain commonly observed zidovudine resistance mutations in the HIV-1 reverse transcriptase (M41L, K70R, T215Y, and M41L+T215Y). In the absence of zidovudine, all variants tested displayed reduced replicative fitness compared to wild-type HIV-1
HXB2
. The order of relative fitness was wild type > K70R ≫ T215Y = M41L+T215Y > M41L. Mixed cultures in the presence of zidovudine showed a dose-dependent selection pressure against the wild-type virus which varied according to the resistance profile of each virus. The information gathered from this approach provides insight into competition among multiple HIV-1 variants, which likely occurs in vivo with drug selection pressure, and may be applicable in more complex mathematical models for predicting the emergence of HIV-1 variants after the initiation of antiretroviral therapy.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
160 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献