Control of Adenovirus Early Gene Expression during the Late Phase of Infection

Author:

Fessler Shawn P.1,Young C. S. H.1

Affiliation:

1. Department of Microbiology, Columbia University, New York, New York 10032

Abstract

ABSTRACT The adenovirus gene regulatory program occurs in two distinct phases, as defined by the onset of DNA replication. During the early phase, the E1A, E1B, E2, E3, and E4 genes are maximally expressed, while the major late promoter (MLP) is minimally expressed and transcription is attenuated. After the onset of DNA replication, the IVa2 and pIX genes are expressed at high levels, transcription from the MLP is unattenuated and fully activated, and early gene expression is repressed. Although the cis elements and trans -acting factors responsible for the late-phase activation of the MLP have been identified and characterized and the role of DNA replication in activation has been established, the mechanism(s) underlying the commensurate decrease in early gene expression has yet to be elucidated. The results of this study demonstrate that this decrease depends on a fully functional MLP. Specifically, virus mutants with severely deficient transcription from the MLP exhibit a marked increase in expression of the E1A, E1B, and E2 early genes. These increases were observed at the level of transcription initiation, mRNA accumulation, and protein production. In addition, expression from the late gene pIX, which is not contained within the major late transcription unit (MLTU), is also markedly increased. To begin the analysis of the mechanisms underlying these late-phase effects, mixed-infection experiments with mutant and wild-type viruses were performed. The results show that the effects on early gene expression, as measured both at the protein and RNA levels, are mediated in trans and not in cis . These observations are consistent either with a model in which one or more late protein products encoded by the MLTU acts as a repressor of early gene expression or with one in which the wild-type MLP competes with early promoters for limiting transcription factors.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3