Endoplasmic reticulum-associated SARS-CoV-2 ORF3a elicits heightened cytopathic effects despite robust ER-associated degradation

Author:

Zhang Jiantao1ORCID,Cruz-Cosme Ruth2,Zhang Chenyu1,Liu Dongxiao2,Tang Qiyi2ORCID,Zhao Richard Y.13456ORCID

Affiliation:

1. Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA

2. Department of Microbiology, Howard University College of Medicine, Washington, DC, USA

3. Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA

4. Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA

5. Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA

6. Research & Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA

Abstract

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ORF3a protein plays a vital role in viral pathogenesis and coronavirus disease 2019 (COVID-19). Like the spike protein, ORF3a mutates frequently, and certain variants are associated with the severity of COVID-19. Given the clinical significance and functional implications of ORF3a mutations, we conducted a comprehensive mutagenesis study targeting various known functional elements and revealed two distinctive types of ORF3a proteins based on their subcellular localizations: ORF3a proteins primarily localize on the lysosomal membrane (L-ORF3a) and those present in the endoplasmic reticulum (E-ORF3a). The objective of this study was to contrast the functional and mechanistic distinctions between these two types of ORF3a proteins. We examined six distinct ORF3a mutants and assessed their effects on cellular oxidative stress, nuclear factor kappa B-induced cytokine production, and cell death. Mechanistically, we explored ORF3a-induced ER stress, autophagy, and interactions with relevant cellular proteins. Our findings indicate that ORF3a proteins induce cytopathic effects through a similar mechanism, irrespective of their subcellular location. However, E-ORF3a proteins elicit more pronounced cytopathic effects despite their lower abundance and minimal impact on ER stress and autophagy when compared to L-ORF3a proteins. This discrepancy is attributed to ER-associated degradation since ORF3a proteins bind to a ubiquitin E3 ligase TRIM59. Inhibition of the 26S proteasome partially restores the protein levels of E-ORF3a and cellular ER stress response. This suggests that even a small quantity of ORF3a can lead to significant cytopathic effects due to the delicate nature of ER. Our study underscores the intricate interplay of dynamic cellular signaling within these two subcellular compartments in response to ORF3a. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has tragically claimed millions of lives through coronavirus disease 2019 (COVID-19), and there remains a critical gap in our understanding of the precise molecular mechanisms responsible for the associated fatality. One key viral factor of interest is the SARS-CoV-2 ORF3a protein, which has been identified as a potent inducer of host cellular proinflammatory responses capable of triggering the catastrophic cytokine storm, a primary contributor to COVID-19-related deaths. Moreover, ORF3a, much like the spike protein, exhibits a propensity for frequent mutations, with certain variants linked to the severity of COVID-19. Our previous research unveiled two distinct types of ORF3a mutant proteins, categorized by their subcellular localizations, setting the stage for a comparative investigation into the functional and mechanistic disparities between these two types of ORF3a variants. Given the clinical significance and functional implications of the natural ORF3a mutations, the findings of this study promise to provide invaluable insights into the potential roles undertaken by these mutant ORF3a proteins in the pathogenesis of COVID-19.

Funder

U.S. Department of Veterans Affairs

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3