Affiliation:
1. Department of Botany and Microbiology and Department of Chemistry and Biochemistry, 2 The University of Oklahoma, Norman, Oklahoma 73019
Abstract
The anaerobic biodegradation of picloram (3,5,6-trichloro-4-amino-2-pyridinecarboxylic acid) in freshwater sediment was favored under methanogenic conditions but not when sulfate or nitrate was available as a terminal electron acceptor. Under the former conditions, more than 85% of the parent substrate (340 μM) was removed from nonsterile incubations in 30 days, following a 50-day acclimation period. Concomitant with substrate decay, an intermediate transiently accumulated in the sediment slurries. By liquid chromatography-mass spectrometry, the intermediate was identified as an isomer of dichloro-4-amino-2-pyridinecarboxylic acid. Proton nuclear magnetic resonance evidence suggested that a chlorine was reductively removed from the parent substrate at the position
meta
to the nitrogen heteroatom. Upon continued incubation, the dechlorinated product was transformed into an unidentified compound which accumulated and resisted further decay. The addition of sulfate or bromoethanesulfonic acid to sediment slurries inhibited picloram dehalogenation, but molybdate reversed the inhibitory effect of sulfate on pesticide metabolism. These findings help clarify the fate of a halogenated nitrogen heterocyclic herbicide in anaerobic environments.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献