Scanning electron microscope evidence for bacterial colonization of a drinking-water distribution system

Author:

Ridgway H F,Olson B H

Abstract

The surfaces of water distribution mains and suspended particulate matter from drinking water were examined by using scanning electron microscopy to investigate the nature and extent of association of microorganisms with these surfaces. In addition, X-ray energy-dispersive microanalysis was used to determine the elemental constitution of the pipe surface. Though distributed sparsely and randomly along the pipe surface, a variety of morphologically distinguishable bacteria-like structures and microcolonies were observed. The morphologies of the individual cells varied form chain-forming cocci to filamentous and prosthecate cell types. The iron-oxidizing bacterium Gallionella, recognized by its characteristic helical stalks, was observed both in water samples and attached to pipe surfaces. Attachment of some microbes to the pipe surface was apparently mediated by extracellular fibrillar appendages. Large numbers of rod-shaped bacteria were also evident adhering to the surfaces of suspended detritus or silt particles recovered from water samples by filtration. X-ray energy scans of the pipe surface revealed the presence of five major elemental constituents including silicon, phosphorous, sulfur, calcium, and iron. Smaller quantities of the elements zinc, magnesium, aluminum, potassium, and manganese were also detected. The public health significance of sessile microbial communities in drinking-water distribution systems is discussed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference26 articles.

1. Bacterial aftergrowths in distribution systems;Baylis J. R.;Water Works and Sewerage,1938

2. Berman N. P. 1973. The occurrence and significance of actinomycetes in water supplies p. 219-229. In G. Sykes and F. A. Skinner (ed.) The actinomycetales: characteristics and practical importance. Academic Press Inc. London.

3. Simultaneous measurement of phosphorus and carbon uptake in Lake Kinneret by multiple isotopic labeling and differential filtration;Berman T.;Microbial Ecol.,1977

4. A rapid critical point method using fluorocarbons ("freons;Cohen A. L.;J. Microsc. (Paris),1968

5. Disease outbreaks caused by drinking water;Craun G. F.;J. Water Pollut. Control Fed.,1979

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3