A Patch of Positively Charged Amino Acids Surrounding the Human Immunodeficiency Virus Type 1 Vif SLVx4Yx9Y Motif Influences Its Interaction with APOBEC3G

Author:

Chen Gongying12,He Zhiwen13,Wang Tao1,Xu Rongzhen3,Yu Xiao-Fang13

Affiliation:

1. Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205

2. Sixth Hospital of Hangzhou, Zhejiang

3. Second Affiliated Hospital, Cancer Institute, School of Medicine, Zhejiang University, Zhejiang, China

Abstract

ABSTRACT The amino-terminal region of the Vif molecule in human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV) contains a conserved SLV/Ix4Yx9Y motif that was first described in 1992, but the importance of this motif for Vif function has not yet been examined. Our characterization of the amino acids surrounding this motif in HIV-1 Vif indicated that the region is critical for APOBEC3 suppression. In particular, amino acids K22, K26, Y30, and Y40 were found to be important for the Vif-induced degradation and suppression of cellular APOBEC3G (A3G). However, mutation of these residues had little effect on the Vif-mediated suppression of A3F, A3C, or A3DE, suggesting that these four residues are not important for Vif assembly with the Cul5 E3 ubiquitin ligase or protein folding in general. The LV portion of the Vif SLV/Ix4Yx9Y motif was found to be required for optimal suppression of A3F, A3C, or A3DE. Thus, the SLV/Ix4Yx9Y motif and surrounding amino acids represent an important functional domain in the Vif-mediated defense against APOBEC3. In particular, the positively charged K26 of HIV-1 Vif is invariably conserved within the SLV/Ix4Yx9Y motif of HIV/SIV Vif molecules and was the most critical residue for A3G inactivation. A patch of positively charged and hydrophilic residues (K 22 x 3 K 26 x 3 Y 30 x 9 YRHHY 44 ) and a cluster of hydrophobic residues (V 55 xIPLx 4-5 LxΦx2YWxL 72 ) were both involved in A3G binding and inactivation. These structural motifs in HIV-1 Vif represent attractive targets for the development of lead inhibitors to combat HIV infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3