Sites of copy choice replication involved in generation of vesicular stomatitis virus defective-interfering particle RNAs

Author:

Meier E,Harmison G G,Keene J D,Schubert M

Abstract

The copy choice model for the generation of defective interfering (DI) particles of vesicular stomatitis virus suggests that during replication the polymerase prematurely terminates, moves with the nascent daughter strand to another site on the same or a different template molecule, and resumes elongation of the nascent chain. We have analyzed the sites where premature termination or resumption of replication has occurred during the generation of the deletion DI particle LT, the snapback DI particle 011, and the panhandle DI particles T, T(L), and 611. The recombination sites were identified by comparing the nucleotide sequences of the relevant regions of these DI particle RNAs to those of the vesicular stomatitis virus L gene (Schubert et al., J. Virol. 51:505-514, 1984). Sequence homology was not detected between these sites, which rules out the existence of a general terminator or promoter sequence involved in copy choice replication. In several cases, however, premature termination or resumption of RNA replication may be favored by specific signal sequences. The sequences immediately before the start and at the end of the deletion in DI LT contain two hexanucleotides, ATCTGA and GATTGG, in a similar spacing. In these case of DI T and 611, but not of DI T(L), the end of the 5'-terminal region bears the hexanucleotide CCUCUU. This sequence is also repeated in the stem region in all three DI particle genomes. In addition, we present data that the added 3'-terminal regions of the panhandle DI particle RNAs may differ by only one base and are 46 [DI T(L) and 611] or 45 (DI T) bases long. We suggest that each site of the vesicular stomatitis virus genome has the potential to give rise to DI particle RNAs. Specific sequences, however, may modulate this process in a quantitative way, and they favor the generation of certain types of DI particle genomes like those of the panhandle type.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3