Abstract
The antigenic structure of simian virus 40 (SV40) large tumor antigen (T-ag) in the plasma membranes of SV40-transformed mouse cells and SV40-infected monkey cells was characterized as a step toward defining possible biological function(s). Wild-type SV40, as well as a deletion mutant of SV40 (dl1263) which codes for a truncated T-ag with an altered carboxy terminus, was used to infect permissive cells. Members of a series of monoclonal antibodies directed against antigenic determinants on either the amino or the carboxy terminus of the T-ag polypeptide were able to precipitate surface T-ag (as well as nuclear T-ag) from both SV40-transformed and SV40-infected cells. Cellular protein p53 was coprecipitated with T-ag by all T-ag-reactive reagents from the surface and nucleus of SV40-transformed cells. In contrast, T-ag, but not T-ag-p53 complex, was recovered from the surface of SV40-infected cells. These results confirm that nuclear T-ag and surface T-ag are highly related molecules and that a complex of SV40 T-ag and p53 is present at the surface of SV40-transformed cells. Detectable levels of such a complex do not appear to be present on SV40-infected cells. Both the carboxy and amino termini of T-ag are exposed on the surfaces of SV40-transformed and -infected cells. The possible relevance of the presence of a T-ag-p53 complex on the surface of SV40-transformed cells and its absence from SV40-infected cells is considered.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献