Nonencapsulated Streptococcus pneumoniae: Emergence and Pathogenesis

Author:

Keller Lance E.1,Robinson D. Ashley1,McDaniel Larry S.1ORCID

Affiliation:

1. Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA

Abstract

ABSTRACT While significant protection from pneumococcal disease has been achieved by the use of polysaccharide and polysaccharide-protein conjugate vaccines, capsule-independent protection has been limited by serotype replacement along with disease caused by nonencapsulated Streptococcus pneumoniae (NESp). NESp strains compose approximately 3% to 19% of asymptomatic carriage isolates and harbor multiple antibiotic resistance genes. Surface proteins unique to NESp enhance colonization and virulence despite the lack of a capsule even though the capsule has been thought to be required for pneumococcal pathogenesis. Genes for pneumococcal surface proteins replace the capsular polysaccharide (cps) locus in some NESp isolates, and these proteins aid in pneumococcal colonization and otitis media (OM). NESp strains have been isolated from patients with invasive and noninvasive pneumococcal disease, but noninvasive diseases, specifically, conjunctivitis (85%) and OM (8%), are of higher prevalence. Conjunctival strains are commonly of the so-called classical NESp lineages defined by multilocus sequence types (STs) ST344 and ST448, while sporadic NESp lineages such as ST1106 are more commonly isolated from patients with other diseases. Interestingly, sporadic lineages have significantly higher rates of recombination than classical lineages. Higher rates of recombination can lead to increased acquisition of antibiotic resistance and virulence factors, increasing the risk of disease and hindering treatment. NESp strains are a significant proportion of the pneumococcal population, can cause disease, and may be increasing in prevalence in the population due to effects on the pneumococcal niche caused by pneumococcal vaccines. Current vaccines are ineffective against NESp, and further research is necessary to develop vaccines effective against both encapsulated and nonencapsulated pneumococci.

Funder

institutional funds

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3