Spatial and Temporal Shifts in Bacterial Biogeography and Gland Occupation during the Development of a Chronic Infection

Author:

Keilberg Daniela1,Zavros Yana2,Shepherd Benjamin3,Salama Nina R.3,Ottemann Karen M.1ORCID

Affiliation:

1. Department of Microbiology and Toxicology, University of California Santa Cruz, Santa Cruz, California, USA

2. Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, USA

3. Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

Abstract

ABSTRACT Gland colonization may be one crucial route for bacteria to maintain chronic gastrointestinal infection. We developed a quantitative gland isolation method to allow robust bacterial population analysis and applied it to the gastric pathobiont Helicobacter pylori . After infections in the murine model system, H. pylori populations multiply both inside and outside glands in a manner that requires the bacteria to be motile and chemotactic. H. pylori is able to achieve gland densities averaging 25 to 40 bacteria/gland after 2 to 4 weeks of infection. After 2 to 4 weeks of infection, a primary infection leads to colonization resistance for a secondary infection. Nonetheless, about ~50% of the glands remained unoccupied, suggesting there are as-yet unappreciated parameters that prevent gastric gland colonization. During chronic infections, H. pylori populations collapsed to nearly exclusive gland localization, to an average of <8 bacteria/gland, and only 10% of glands occupied. We analyzed an H. pylori chemotaxis mutant (Che ) to gain mechanistic insight into gland colonization. Che strains had a severe inability to spread to new glands and did not protect from a secondary infection but nonetheless achieved a chronic gland colonization state numerically similar to that of the wild type. Overall, our analysis shows that bacteria undergo substantial population dynamics on the route to chronic colonization, that bacterial gland populations are maintained at a low level during chronic infection, and that established gland populations inhibit subsequent colonization. Understanding the parameters that promote chronic colonization will allow the future successful design of beneficial microbial therapeutics that are able to maintain long-term mammalian colonization. IMPORTANCE Many bacteria have an impressive ability to stay in the gastrointestinal tract for decades despite ongoing flow and antimicrobial attacks. How this staying power is achieved is not fully understood, but it is important to understand as scientists plan so-called designer microbiomes. The gastrointestinal tract is lined with repeated invaginations called glands, which may provide one niche for chronic colonization. We developed a quantitative gland isolation method to allow robust and efficient bacterial population analysis and applied it to the gastric pathogen Helicobacter pylori . Bacterial populations increased inside and outside glands at early time points but were found exclusively within glands during late time points in the chronic state. H. pylori required the ability to swim to move to new glands. Last, a fit gland bacterial population leads to colonization resistance of a second one. Our approach identified previously unappreciated aspects of gland occupation, supporting the idea that glands are the desired niche for stable, chronic colonization.

Funder

Leopoldina

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3