Discovery of Two Native Baeyer-Villiger Monooxygenases for Asymmetric Synthesis of Bulky Chiral Sulfoxides

Author:

Zhang Yan1,Liu Feng1,Xu Na1,Wu Yin-Qi1,Zheng Yu-Cong1,Zhao Qian2,Lin Guoqiang3,Yu Hui-Lei1,Xu Jian-He1

Affiliation:

1. State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China

2. Jiangsu Key Laboratory of Chiral Drug Development, Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing, China

3. Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China

Abstract

ABSTRACT Two Baeyer-Villiger monooxygenases (BVMOs), designated Bo BVMO and Am BVMO, were discovered from Bradyrhizobium oligotrophicum and Aeromicrobium marinum , respectively. Both monooxygenases displayed novel features for catalyzing the asymmetric sulfoxidation of bulky and pharmaceutically relevant thioethers. Evolutionary relationship and sequence analysis revealed that the two BVMOs belong to the family of typical type I BVMOs and the subtype ethionamide monooxygenase. Both BVMOs are active toward medium- and long-chain aliphatic ketones as well as various thioether substrates but are ineffective toward cyclohexanone, aromatic ketones, and other typical BVMO substrates. Bo BVMO and Am BVMO showed the highest activities (0.117 and 0.025 U/mg protein, respectively) toward thioanisole among the tested substrates. Furthermore, these BVMOs exhibited distinct activity and excellent stereoselectivity toward bulky and prochiral prazole thioethers, which is a unique feature of this family of BVMOs. No native enzyme has been reported for the asymmetric sulfoxidation of bulky prazole thioethers into chiral sulfoxides. The identification of Bo BVMO and Am BVMO provides an important scaffold for discovering enzymes capable of asymmetrically oxidizing bulky thioether substrates by genome mining. IMPORTANCE Baeyer-Villiger monooxygenases (BVMOs) are valuable enzyme catalysts that are an alternative to the chemical Baeyer-Villiger oxidation reaction. Although BVMOs display broad substrate ranges, no native enzymes were reported to have activity toward the asymmetric oxidation of bulky prazole-like thioether substrates. Herein, we report the discovery of two type I BVMOs from Bradyrhizobium oligotrophicum ( Bo BVMO) and Aeromicrobium marinum ( Am BVMO) which are able to catalyze the asymmetric sulfoxidation of bulky prazole thioethers (proton pump inhibitors [PPIs], a group of drugs whose main action is a pronounced and long-lasting reduction of gastric acid production). Efficient catalysis of omeprazole oxidation by Bo BVMO was developed, indicating that this enzyme is a promising biocatalyst for the synthesis of bulky and pharmaceutically relevant chiral sulfoxide drugs. These results demonstrate that the newly identified enzymes are suitable templates for the discovery of more and better thioether-converting BVMOs.

Funder

Shanghai Science and Technology Program

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3