Pharmacokinetics and Renal Disposition of Polymyxin B in an Animal Model

Author:

Abdelraouf Kamilia,He Jie,Ledesma Kimberly R.,Hu Ming,Tam Vincent H.

Abstract

ABSTRACTThe increasing prevalence of multidrug-resistant Gram-negative infections has led to the resurgence of systemic polymyxin B, but little is known about its pharmacokinetics. The objective of this study was to characterize the pharmacokinetics and renal disposition of polymyxin B. Eight female Sprague-Dawley rats (weight, 225 to 250 g) were administered a single intravenous polymyxin B dose (4 mg/kg of body weight). Serial serum samples were collected and assayed for major polymyxin B components using a validated ultraperformance liquid chromatography-tandem mass spectrometry method. The best-fit pharmacokinetic parameters of each component were derived and compared using one-way analysis of variance. Cumulative urine was also collected daily for 48 h and assayed for polymyxin B. Kidney drug concentrations were measured at 6 h (n= 3) and 48 h (n= 3) after the same dose. Additionally, three rats were administered 2 doses of intravenous polymyxin B (4 mg/kg) 7 days apart. Serial serum samples were collected pre- and post-renal insufficiency (induced by uranyl nitrate) and assayed for polymyxin B. The pharmacokinetic parameters of the major components did not appear to be significantly different (P> 0.05). Less than 1% of the dose was recovered unchanged in urine collected over 48 h following administration. Therapeutic drug concentrations persisted in kidney tissue at 48 h. The post-renal insufficiency to pre-renal insufficiency ratio of the area under the serum concentration-time curve from time zero to infinity was 1.33 ± 0.04. Polymyxin B components appear to have similar pharmacokinetics. Polymyxin B preferentially persists in kidneys, which suggests a selective uptake process in renal cells. A mechanism(s) other than renal excretion could be involved in polymyxin B elimination, and dosing adjustment in renal insufficiency may not be necessary.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3