Identification of the mob Genes of Plasmid pSC101 and Characterization of a Hybrid pSC101-R1162 System for Conjugal Mobilization

Author:

Meyer Richard1

Affiliation:

1. Section of Molecular Genetics and Microbiology, School of Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712

Abstract

ABSTRACT Similarities in DNA base sequence indicate that pSC101 and R1162 encode related systems for conjugal mobilization, although these plasmids are otherwise very different. The mob region of pSC101 was cloned, and two genes that are required for transfer were identified. One gene, mobA , encodes a protein similar in amino acid sequence to the DNA processing domain of the R1162 MobA protein. The other gene, mobX , is within the same transcriptional unit as the pSC101 mobA and is located just downstream, at the same position occupied by mobB in R1162. Despite this, the MobB and MobX proteins do not appear to be closely related based on a comparison of their amino acid sequences. Complementation analysis indicated that neither of the pSC101 Mob proteins could substitute for, or be replaced by, their R1162 counterparts, nor were they active together at the R1162 origin of transfer ( oriT ). However, the full set of R1162 Mob proteins did recognize the pSC101 oriT . A hybrid system for mobilization, active at the R1162 oriT site, was constructed. This system consists of MobX and a chimeric protein made up of the DNA cleaving-ligating domain of the R1162 MobA protein joined to a fragment of pSC101 MobA. Previous results suggested that MobB and a region of MobA distinct from the DNA processing domain together formed a functional unit in transfer. The present results support this model because the chimeric MobA, although active on R1162 oriT , requires the pSC101 protein MobX for efficient plasmid mobilization.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3