Identification of an Alternative Nucleoside Triphosphate: 5′-Deoxyadenosylcobinamide Phosphate Nucleotidyltransferase in Methanobacterium thermoautotrophicum ΔH

Author:

Thomas Michael G.1,Escalante-Semerena Jorge C.1

Affiliation:

1. Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin

Abstract

ABSTRACT Computer analysis of the archaeal genome databases failed to identify orthologues of all of the bacterial cobamide biosynthetic enzymes. Of particular interest was the lack of an orthologue of the bifunctional nucleoside triphosphate (NTP):5′-deoxyadenosylcobinamide kinase/GTP:adenosylcobinamide-phosphate guanylyltransferase enzyme (CobU in Salmonella enterica ). This paper reports the identification of an archaeal gene encoding a new nucleotidyltransferase, which is proposed to be the nonorthologous replacement of the S. enterica cobU gene. The gene encoding this nucleotidyltransferase was identified using comparative genome analysis of the sequenced archaeal genomes. Orthologues of the gene encoding this activity are limited at present to members of the domain Archaea . The corresponding ORF open reading frame from Methanobacterium thermoautotrophicum ΔH (MTH1152; referred to as cobY ) was amplified and cloned, and the CobY protein was expressed and purified from Escherichia coli as a hexahistidine-tagged fusion protein. This enzyme had GTP:adenosylcobinamide-phosphate guanylyltransferase activity but did not have the NTP:AdoCbi kinase activity associated with the CobU enzyme of S. enterica . NTP:adenosylcobinamide kinase activity was not detected in M. thermoautotrophicum ΔH cell extract, suggesting that this organism may not have this activity. The cobY gene complemented a cobU mutant of S. enterica grown under anaerobic conditions where growth of the cell depended on de novo adenosylcobalamin biosynthesis. cobY , however, failed to restore adenosylcobalamin biosynthesis in cobU mutants grown under aerobic conditions where de novo synthesis of this coenzyme was blocked, and growth of the cell depended on the assimilation of exogenous cobinamide. These data strongly support the proposal that the relevant cobinamide intermediates during de novo adenosylcobalamin biosynthesis are adenosylcobinamide-phosphate and adenosylcobinamide-GDP, not adenosylcobinamide. Therefore, NTP:adenosylcobinamide kinase activity is not required for de novo cobamide biosynthesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3