Affiliation:
1. Department of Microbiology, University of Georgia, Athens, Georgia 30602
Abstract
ABSTRACT
Polyamines are required for optimal growth in most cells; however, polyamine accumulation leads to inhibition of cellular growth. To reduce intracellular polyamine levels, spermidine is monoacetylated in both prokaryotes and eukaryotes. In
Escherichia coli
, the
speG
gene encodes the spermidine acetyltransferase, which transfers the acetyl group to either the N-1 or N-8 position. In addition to polyamine accumulation, stress conditions, such as cold shock, cause an increase in the level of spermidine acetylation, suggesting an adaptive role for reduced polyamine levels under stressful growth conditions. The effect of spermidine accumulation on the growth of
E. coli
at low temperature was examined using a
speG
mutant. At 37°C, growth of the
speG
mutant was normal in the presence of 0.5 or 1 mM spermidine. However, following a shift to 7°C, the addition of 0.5 or 1 mM spermidine resulted in inhibition of cellular growth or cell lysis, respectively. Furthermore, at 7°C, spermidine accumulation resulted in a decrease in total protein synthesis accompanied by an increase in the synthesis of the major cold shock proteins CspA, CspB, and CspG. However, the addition of 50 mM Mg
2+
restored growth and protein synthesis in the presence of 0.5 mM spermidine. The results indicate that the level of spermidine acetylation increases at low temperature to prevent spermidine toxicity. The data suggest that the excess spermidine replaces the ribosome-bound Mg
2+
, resulting in ribosome inactivation at low temperatures.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献