Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector

Author:

Das Gupta S K1,Bashyam M D1,Tyagi A K1

Affiliation:

1. Department of Biochemistry, University of Delhi South Campus, India.

Abstract

We have constructed a promoter selection vector for mycobacteria to analyze the sequences involved in mycobacterial transcriptional regulation. The vector pSD7 contains extrachromosomal origins of replication from Escherichia coli as well as from Mycobacterium fortuitum and a kanamycin resistance gene for positive selection in mycobacteria. The promoterless chloramphenicol acetyltransferase (CAT) reporter gene has been used to detect mycobacterial promoter elements in a homologous environment and to quantify their relative strengths. Using pSD7, we have isolated 125 promoter clones from the slowly growing pathogen Mycobacterium tuberculosis H37Rv and 350 clones from the fast-growing saprophyte Mycobacterium smegmatis. The promoters exhibited a wide range of strengths, as indicated by their corresponding CAT reporter activities (5 to 2,500 nmol/min/mg of protein). However, while most of the M. smegmatis promoters supported relatively higher CAT activities ranging from 100 to 2,500 nmol/min/mg of protein, a majority of those from M. tuberculosis supported CAT activities ranging from 5 to only about 100 nmol/min/mg of protein. Our results indicate that stronger promoters occur less frequently in the case of M. tuberculosis compared with M. smegmatis. To assess the extent of divergence of mycobacterial promoters vis-à-vis those of E. coli, the CAT activities supported by the promoters in E. coli were measured and compared with their corresponding activities in mycobacteria. Most of the mycobacterial promoter elements functioned poorly in E. coli. The homologous selection system that we have developed has thus enabled the identification of mycobacterial promoters that apparently function optimally only in a native environment.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3