Evidence from mutation spectra that the UV hypermutability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoproducts.

Author:

Wang Y C,Maher V M,Mitchell D L,McCormick J J

Abstract

Xeroderma pigmentosum (XP) variant patients are genetically predisposed to sunlight-induced skin cancer. Fibroblasts derived from these patients are extremely sensitive to the mutagenic effect of UV radiation and are abnormally slow in replicating DNA containing UV-induced photoproducts. However, unlike cells from the majority of XP patients, XP variant cells have a normal or nearly normal rate of nucleotide excision repair of such damage. To determine whether their UV hypermutability reflected a slower rate of excision of photoproducts specifically during early S phase when the target gene for mutations, i.e., the hypoxanthine (guanine) phosphoribosyltransferase gene (HPRT), is replicated, we synchronized diploid populations of normal and XP variant fibroblasts, irradiated them in early S phase, and compared the rate of loss of cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidones from DNA during S phase. There was no difference. Both removed 94% of the 6-4 pyrimidine-pyrimidones within 8 h and 40% of the dimers within 11 h. There was also no difference between the two cell lines in the rate of repair during G1 phase. To determine whether the hypermutability resulted from abnormal error-prone replication of DNA containing photoproducts, we determined the spectra of mutations induced in the coding region of the HPRT gene of XP variant cells irradiated in early S and G1 phases and compared with those found in normal cells. The majority of the mutations in both types of cells were base substitutions, but the two types of cells differed significantly from each other in the kinds of substitutions, but the two types differed significantly from each other in the kinds of substitutions observed either in mutants from S phase (P < 0.01) or from G1 phase (P = 0.03). In the variant cells, the substitutions were mainly transversions (58% in S, 73% in G1). In the normal cells irradiated in S, the majority of the substitutions were G.C --> A.T, and most involved CC photoproducts in the transcribed strand. In the variant cells irradiated in S, substitutions involving cytosine in the transcribed strand were G.C --> T.A transversions exclusively. G.C --> A.T transitions made up a much smaller fraction of the substitutions than in normal cells (P < 0.02), and all of them involved photoproducts located in the nontranscribed strand. The data strongly suggest that XP variant cells are much less likely than normal cells to incorporate either dAMP or dGMP opposite the pyrimidines involved in photoproducts. This would account for their significantly higher frequency of mutants and might explain their abnormal delay in replicating a UV-damaged template.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The accurate bypass of pyrimidine dimers by DNA polymerase eta contributes to ultraviolet-induced mutagenesis;Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis;2024-01

2. Contributions of replicative and translesion DNA polymerases to mutagenic bypass of canonical and atypical UV photoproducts;Nature Communications;2023-05-04

3. Ultraviolet Radiation Carcinogenesis;Holland‐Frei Cancer Medicine;2022-10-21

4. Biochemical and photochemical mechanisms that produce different UV-induced mutation spectra;Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis;2021-07

5. Xeroderma Pigmentosum: A Model for Human Premature Aging;Journal of Investigative Dermatology;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3